Complete the following information for Unit 3.

Find the following characteristics of each quadratic function.

1)

A of S: _____ Vertex: _____

D of 0: _____ Min/Max: _____

Range: _____

2)

A of S: _____ Vertex: _____

D of 0: _____

Range: _____

Graph the following Quadratic Functions.

3)
$$y = -x^2 + 6x - 12$$

4)
$$f(x) = 2(x-4)^2 + 4 \int_0^x f(x) dx$$

Find the axis of symmetry and vertex of each quadratic function.

5)
$$y = -(x-2)^2 - 2$$
 6) $f(x) = -x^2 + 4x$

6)
$$f(x) = -x^2 + 4x$$

7)
$$y = -\frac{1}{2}x^2 + 4x - 5$$

Domain: _____ 7)
$$y = -\frac{1}{2}x^2 + 4x - 5$$
 8) $f(x) = 2(x+1)^2 + 3$

Min/Max: _____ | Factor each quadratic expression.

Domain: _____ 9)
$$n^2 - 17n + 70$$
 10) $3x^2 + 7x - 6$

10)
$$3x^2 + 7x - 6$$

Solve each quadratic equation by factoring.

11)
$$a^2 + 5a + 14 = 8$$
 12) $7k^2 - 26k + 15 = 0$

12)
$$7k^2 - 26k + 15 = 0$$

Solve each quadratic equation by using the quadratic formula.

13)
$$11m^2 - 4m - 21 = 0$$
 14) $v^2 - 144 = 0$

$$14) v^2 - 144 = 0$$

$$15) x^2 + 18 = 11x$$

15)
$$x^2 + 18 = 11x$$
 16) $15r^2 + 4r - 24 = 8r^2$

Find the value of *c* that completes the perfect trinomial.

17)
$$x^2 - \frac{7}{2}x + c$$

18)
$$x^2 - 8x + c$$

Identify the following as a Function or Not a Function.

25) The length of a rectangle is four more than its width. The area of the rectangle is 96 square inches. Find the value of *x* and the dimensions of the rectangle.

Show the completing the square process.

19)
$$k^2 - 10k = 39$$

$$20) x^2 + 2x = 19$$

Find the rate of change (2^{nd} difference) in the table.

1

000		
22)	X	у
	-2	16
	-1	9
	0	4
	1	1
	2	0
	3	1
	4	4

26) The Demon Drop at Cedar Point in Ohio takes riders to the top of a tower and drops them 60 feet. A function that approximates this ride is $h = -16t^2 + 64t + 60$, where h is the height in feet and t is the time in seconds. About how many seconds does it take for riders to drop to the ground? Round to the nearest tenth.

Identify the transformations.

-6

23)
$$f(x) = -(x+3)^2 - 4$$

24)
$$y = \frac{1}{2}(x-1)^2 + 7$$